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Introduction

Motivation
Intracranial hemorrhage (ICH) is a life-threatening condition when bleeding happens within the skull due
to trauma, stroke, and aneurysm rupture [1]. Annually, more than 20,000 individuals in the United States
die of intracranial hemorrhage [2]. The ability to accurately detect and segment ICH from Non-Contrast
Computed Tomography (NCCT) images is critical for early diagnosis and treatment of patients. Manually
segmenting ICH is a time-consuming and subjective process that can lead to inconsistencies and errors.
Therefore, there is a need for research to develop automated methods for ICH segmentation.

The motivation for this project is to develop a tool that can accurately segment ICH from NCCT images
using advanced algorithms. Our goal is to improve the accuracy and efficiency of ICH segmentation,
thereby improving patient outcomes and reducing the workload of medical professionals. This objective
was inspired by the 2022 Instance Challenge, which aims to promote the development of automated
methods for ICH segmentation [3].

Background and Objectives
Non-Contrast Computed Tomography (NCCT) is a commonly used imaging modality to diagnose ICH
[4]. However, the accurate segmentation of ICH from NCCT images is challenging due to the complex
and variable nature of the hemorrhage. Previous methods for ICH segmentation like manual segmentation
and thresholding have been shown to be inaccurate and time-consuming. Recent advancements in
machine learning techniques, such as Chan-Vese and Simple Linear Iterative Clustering, have shown
improved efficiency and accuracy [5]. Therefore, we will develop a program that will use these methods
to segment and evaluate ICH from NCCT images. The tool will be evaluated using the relative volume
difference (RVD) metric. The results of this project will contribute to the development of more accurate
and effective methods for ICH segmentation, which will have an important clinical impact.

Theory
Our project uses advanced algorithms for ICH segmentation from NCCT images. We employ
window/level filtering to enhance contrast between the brain and the ICH, based on experiments with
various filtering techniques. We utilize three segmentation methods: threshold-based, Chan-Vese, and
Simple Linear Iterative Clustering (SLIC). Threshold-based segmentation is simple but may not capture
the complex nature of the ICH. Chan-Vese separates the image into two classes but may not capture
detailed information due to limited ability to handle complex shapes. SLIC, a clustering-based method,
allows for more detailed and accurate segmentation of ICH. We evaluate the accuracy of segmentation
using Relative Volume Difference (RVD) calculations, which provides a quantitative assessment of
segmentation results.

https://www.zotero.org/google-docs/?ADj7T4
https://www.zotero.org/google-docs/?eS0QAE
https://www.zotero.org/google-docs/?ZMripR
https://www.zotero.org/google-docs/?QfR5yf
https://www.zotero.org/google-docs/?QcDsBr


Materials and Methods

Data
Our project uses a publicly available dataset from kaggle [6]. This dataset contains 82 NNCT brain
images in jpg format. Each image has approximately 30 slices. Masks were provided for 318 image slices
containing hemorrhages. Images and slices had to be manually selected for analysis because they needed
to contain a visible hemorrhage for segmentation and an associated mask. The following files were used
in our analysis: 049, 050, 051, 052, 053.

Tools
The following tools and packages were used in our analysis:

Table 1. Description of Tools and Data Used

Category Tool Version Description

Hardware Personal Computers N/A All code was run on personal computers
without any issues.

Programming
Framework

Python - Jupyter Notebook 6.4.5 Jupyter Notebook is a web-based
open-source software for developing
Python code. This was used as the
framework for our project [7].

Version
Control

Github Desktop 3.2.1 Github was used to track changes in code.

Data Loading NiBabel Library 5.0.1 NiBabel is a Python library that was used
to help us read and import the NIFTI file
images from our dataset [8].

Filtering SciPy Library
● ndimage.gaussian_filt

er()
● ndimage.sobel()
● ndimage.laplace()

Scikit-image
● denoise_nl_means()

3D Slicer

SciPy
1.7.1

Scikit-image
0.18.3

3D Slicer
5.2.2

Filtering was performed using functions
from SciPy and Scikit-image libraries. 3D
Slicer was used to visualize the effects of
altering the window and level on an image
and selecting image slices for
segmentation.

Segmentation Scikit-image
● Threshold based
● segmentation.chan_ve

se()
● skimage.segmentation

0.18.3 Segmentation was performed manually
using a threshold and with Chan-Vese and
SLIC algorithms from the Scikit library.
The Chan-Vese method groups pixels with
low variance, while SLIC clusters pixels

https://www.zotero.org/google-docs/?eyyhrC
https://www.zotero.org/google-docs/?CgtNBO
https://www.zotero.org/google-docs/?lhhKh8
https://scikit-image.org/docs/stable/api/skimage.restoration.html#skimage.restoration.denoise_nl_means


.slic() based on their similar intensity and
proximity (both common in medical
imaging) [9]

Calculations Scikit-image
● measure.label
● measure.regionprops

0.18.3 Scikit-image functions were used to
calculate the volume of both the brain and
hemorrhage. The measure.label function
labels the hemorrhage and brain regions,
while the measure.regionprops function
calculates the volume. The RVD will be
calculated using the formula: RVD =
(Volume of Hemorrhage Region - Volume
of Brain Region) / (Volume of Brain
Region).

Visualization
Tools

Matplotlib 3.4.3 Matplotlib was used for 2D image
visualization as it is a powerful, easy-to-use
library built on NumPy arrays, designed to
work with advanced Python libraries, and
supports interactive plotting [10].

Processing Pipeline
The below image shows our project approach for a single image. The first step was to pre-process our
data. We identified 4 pre-processing techniques to attempt on our images. We included window & level to
adjust the contrast, one low-pass filter to remove noise and two high-pass filters to perform edge
detection. We included two high-pass filters because we assumed we would need to perform edge
detection prior to segmentation. Each technique would be inspected manually and the best technique or
combination of techniques would be used in our segmentation procedure.

Our second step was segmentation. We needed to segment both the brain and hemorrhage to calculate the
relative volume difference. Three segmentation methods were chosen: Threshold based, Chan-Vese and
Simple Linear Iterative Clustering (SLIC). The threshold method was included because of its simplicity
and use in prior notebooks. The Chan-Vese method was selected because it is commonly used for medical
image segmentation and works by separating an image into two classes with the lowest variance [9].
Finally, SLIC was chosen because it uses k-means which is a commonly used clustering technique [11].
SLIC can also segment each image into a user-defined number of regions. The best segmentation
approaches would be used to calculate the Relative Volume Difference (RVD).

Using our segmented brain and hemorrhage we need to calculate our RVD. RVD was chosen because
hemorrhage volume is a common prognosis tool and one of the two metrics used to evaluate entries in the
2022 Instance Challenge [3], [12]. The RVD will be calculated for our segmentation procedure and
compared against the RVD of the mask. The segmentation technique that produces an RVD closest to the
mask will be our final procedure.

https://www.zotero.org/google-docs/?Vqnle0
https://www.zotero.org/google-docs/?5DBGnp
https://www.zotero.org/google-docs/?pgKrp5
https://www.zotero.org/google-docs/?ebZkBw
https://www.zotero.org/google-docs/?ie4nxm


Finally, we will apply this segmentation procedure to all 5 of our images. This step will determine if our
segmentation approach can be automated or not. The segmentation can be automated if the hemorrhage is
correctly isolated from the brain without manually adjusting any parameters or steps.

Figure 1. Processing Pipeline

Results

The results from this project can be generalized into three parts: filtering, segmentation, and RVD
calculations. In this section, these parts will be analyzed and described to highlight the results gathered
from this project.

Filtering
Various filtering techniques were applied to determine which was the most effective for viewing the ICH.
The different techniques we explored included window/level, median, sobel, high pass filter, etc. Based
on observation, the filter that provided the best result was window/level. Different values were
experimented with and we decided on 130 for the window and 65 for the level. This allowed for much
better contrast between the brain and ICH, as seen in Figure 2 below. On the left is the original image
taken from the dataset, whereas on the right, is the same image with window and leveling applied. A
limitation we experienced during this step included leaving the image slicing as manual. This limitation is
explained more in the discussion section below.



Figure 2. Image from Dataset Before and After Applying Window and Level

Segmentation
To decide which segmentation method was the most effective we experimented with three different kinds:
threshold-based, Chan-Vese, and SLIC. Based on observation, SLIC was the best method at segmenting
the ICH. Threshold-based segmentation was unable to distinguish between the ICH and the perimeter of
the skull. Whereas, Chan-Vese could only segment into two sections meaning it was unable to capture any
detail of the ICH. In Figure 3 below, we have included 6 images showing the original image, filtering
image, ideal mask (provided by the dataset), and the results from all three segmentation models. It is clear
from examining this result that SLIC was the best segmentation model. More results gathered from
working with different images can be found in Appendix A. A limitation we experienced during this step
included leaving the ICH region for segmentation in the SLIC model as manual. This limitation is
explained more in the discussion section below.

Figure 3. Results from Applying Three Segmentation Methods

RVD Calculations
For this part of the results, RVD was calculated for the ideal mask, threshold-based and SLIC model. We
excluded the Chan-Vese model from this calculation because it was obviously not effective in segmenting
the ICH. By calculating these values we could validate that the SLIC model can more accurately segment
the ICH. As seen in Table X below, RVD calculated for the SLIC model was very similar to the RVD
calculated for the ideal mask. As for the threshold-based model, the RVD value was always roughly the
same because the same threshold range was used for each image. In other words, this analysis helped
confirm that the SLIC method was the most effective in segmenting the ICH.



Table 2. Calculated RVD Values

File Number Ideal Mask Threshold-Bas
ed

Threshold %
Error SLIC SLIC %

Error

049.nii 0.995 0.999… 0.40 0.991 0.40

050.nii 0.997 0.999… 0.20 0.994 0.30

051.nii 0.988 0.999… 1.11 0.989 0.10

052.nii 0.988 0.999… 1.11 0.983 0.51

053.nii 0.974 0.999… 2.57 0.968 0.62

Discussion

Our project was aimed at developing an automated segmentation procedure for ICH in NCCT images.
This segmentation procedure should be able to accurately isolate a hemorrhage for use in RVD
calculations and prognosis, and be automated to reduce time and resources spent on image processing.
The results of our segmentation procedure partially meets these aims. Our chosen segmentation procedure
accurately isolates the hemorrhage which is evident by very similar RVD values to the mask. However,
when we applied our procedure to multiple images in our dataset we were not able to isolate the
hemorrhage automatically. This is because the hemorrhage is not always stored in the same region from
the SLIC segmentation. Therefore this procedure is not suitable for automation. However, this procedure
is still beneficial by providing a framework that requires minimal adjustments to achieve an accurate
segmentation.

The RVD results for the 5 images are shown in the above table. The threshold based method resulted in
the same value (0.999) for each image. This is because the threshold method had a very small range of
values resulting in few segmented pixels. The fewer pixels included in the segmentation resulted in
negligible hemorrhage volume and RVD values close to one. In comparison, the SLIC segmentation was
based on k-means clustering and would pick up hemorrhage pixels that were not within the chosen
threshold range. This resulted in a greater hemorrhage volume and RVD values further from one.
Comparing the RVD values from the mask to the threshold and SLIC methods, it is obvious the SLIC
method is better. The threshold method is only better for file 050 when the true RVD is close to one.
However, the SLIC segmentation was able to adapt to each image. The results of our SLIC segmentation
were very high quality with an average percent error of 0.39%. The SLIC segmentation also performed
better visually as seen in Figure 2 and more images in Appendix A. The threshold segmentation would
always include part of the skull, while the SLIC method could isolate only the hemorrhage.

The two main limitations we experienced when completing this project were time and automation. Time
was a limitation because all group members are balancing the rest of their workload while completing this
project. With more time, we may have been able to expand the scope of this project and add further
functionality. With that being said, the requirements were still satisfied and the results gathered were



considered a success. As for automation, it was difficult to write code that was efficient and produced
optimal results. When working on this project there were two steps that we tried to automate but decided
they were better left manual. These two steps were slicing the image and choosing the segmentation
region for the SLIC model. When these steps were automatic, the program was unable to use the optimal
slice that displayed the ICH best and also was unable to segment it well because the program did not
know where the ICH region was. By converting these two steps back to manual, the efficiency of the
program was lowered but the results displayed were more accurate.

Below are recommendations we would pass along to others looking to perform a similar project. These
suggestions are not ways to advance our project but more-so how to increase the likelihood of success in
similar projects:

1. Focus on a single image to start and then scale up. By doing this, we were able to create a strong
foundation and prove that our code worked before looking at multiple images.

2. Experiment with multiple segmentation methods. By trying more than one model, you learn more
about how certain methods work as well as which ones are more effective.

3. Try to find a dataset that has an ideal mask. In the dataset we used, we were provided with the
ideal mask from CT scans which helped us quickly understand what the ideal segmentation result
would look like and saved us the hassle of trying to create our own ideal result.

Future work for enhancing this project could include:
1. Using Dice Similarity Coefficient (DSC) could be an additional step to validate the performance

of the segmentation methods. This is a performance metric used to determine the difference
between the ground-truth and its corresponding prediction.

2. Another way to advance this project would include developing more automated code through the
use of machine learning. By incorporating machine learning, parts of this project that remained
manual could be automated to increase the efficiency of the segmentation.

3. Lastly, different segmentation models could be investigated to compare more results and better
understand how various methods affect the segmentation results.

Conclusion

Intracranial hemorrhages (ICH) is a life-threatening condition that requires early diagnosis and treatment
for improved patient outcomes. Manual segmentation of ICH from Non-Contrast Computed Tomography
(NCCT) images can be time-consuming and subjective, leading to inconsistencies and errors. Therefore,
the development of automated methods for ICH segmentation is crucial. In this project, we aimed to
develop a tool using advanced algorithms to accurately segment ICH from NCCT images, with the goal of
improving the accuracy and efficiency of ICH segmentation.



We utilized a publicly available dataset from Kaggle, and our processing pipeline involved pre-processing
techniques, including window/level adjustment for contrast, low-pass and high-pass filtering for noise
removal and edge detection, followed by segmentation using three methods: threshold-based, Chan-Vese,
and Simple Linear Iterative Clustering (SLIC). The Relative Volume Difference (RVD) was used for
evaluation, as it is commonly used for prognosis and was one of the evaluation metrics in the 2022
Instance Challenge.

Our results showed that window/level adjustment provided the best contrast for viewing ICH, with values
of 130 for window and 65 for level. Among the segmentation methods, SLIC was the most effective in
accurately segmenting ICH from NCCT images, as it could capture the details of the hemorrhage without
including the perimeter of the skull. The RVD calculated for our segmentation procedure was compared
against the RVD of the mask, and the segmentation technique that produced the RVD closest to the mask
was identified as the final procedure.
Our tool has significant clinical implications, as it contributes to the development of more accurate and
efficient methods for ICH segmentation, which can aid in early diagnosis and treatment planning for
patients with intracranial hemorrhages. However, there are limitations in our project, including manual
image slicing and a limited dataset. Future work could involve automated image slicing and further
validation on larger and more diverse datasets. In conclusion, our project developed a tool for accurate
ICH segmentation from NCCT images using advanced algorithms, with SLIC identified as the most
effective segmentation method. The results of this project contribute to the field of medical image
analysis and have the potential to improve patient outcomes in the diagnosis and treatment of intracranial
hemorrhages. Further research and validation are warranted to refine and optimize the tool for clinical
use.



Appendix

Appendix A: Results from Applying Three Segmentation Methods to Different Images

Appendix B: Jupyter Notebook Code

Please see the following pages
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1 Bmen509 Final Results
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[1]: import numpy as np
# Set numpy to print only 2 decimal digits for neatness
np.set_printoptions(precision=2, suppress=True)
import os
import nibabel as nib
from nibabel.testing import data_path
import matplotlib.pyplot as plt
import pandas as pd

from skimage import data, img_as_float
from skimage.segmentation import chan_vese, slic, mark_boundaries
from skimage.color import label2rgb
from os.path import exists
from skimage import measure

[2]: # Function definitions

def window_level_function(image, window, level):

i = image.astype(np.double)

max_val = 255
min_val = 0

upper_lim = level + (0.5*window)
lower_lim = level - (0.5*window)

m = (max_val-min_val)/window
b = max_val - (m*upper_lim)

j = np.empty(shape=(512, 512))

for x in range(511):
for y in range(511):
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if i[x,y] < lower_lim:
j[x,y] = 0

elif i[x,y] > upper_lim:
j[x,y] = 255

else:
j[x,y] = m*(i[x,y]) + b

image = j

return image.astype(np.uint8)

def segment_threshold(img, lower_lim, upper_lim):

out_img = np.zeros_like(img,'uint8')

for x in range(511):
for y in range(511):

if img[x,y] < lower_lim or img[x,y] > upper_lim:
out_img[x,y] = 0

else:
out_img[x,y] = 1

return out_img

def segment_slic(img, num, region):

boundaries = slic(img, n_segments=num) #max_num_iter=100)

out_img = np.zeros_like(boundaries,'uint8')
out_img[boundaries == region] = 1
out_img[boundaries != region] = 0

return out_img

def RVD_calc(brain, hemo):

labels1 = measure.label(brain, background=0) # Identify adjacent pixels
labels2 = measure.label(hemo, background=0)

brain_reg = measure.regionprops(labels1) # Convert lables into regions
hemo_reg = measure.regionprops(labels2)

if len(hemo_reg)==0:
return 0

# Calculate volumes of hemorrhage and brain regions
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# Choose the index for the largest region (background is excluded)
brain_vol = brain_reg[1].area
hem_vol = hemo_reg[0].area

# Calculate RVD
rvd = abs(hem_vol - brain_vol) / brain_vol

return rvd

[3]: slice_array = []
num_segments = []
region = []

[4]: data_path = path = '.\Data\ct_scans'
file = '049.nii'
example_ni1 = os.path.join(data_path, file)
n1_img = nib.load(example_ni1).get_fdata()

data_path = path = './Data/masks'
example_nimask1 = os.path.join(data_path, file)
n1_mask_img = nib.load(example_nimask1).get_fdata()

slice_val = 14
slice_array.append(slice_val)

num_seg = 133
reg = 17
slic_img = segment_slic(n1_img[:,:, slice_val], num_seg, reg)

num_segments.append(num_seg)
region.append(reg)

plt.figure(figsize=(16, 16))

plt.subplot(131)
n1_img = n1_img[:,:, slice_val]
plt.imshow(n1_img, cmap='gray', vmin=0,vmax=1000)
plt.title(str(file) + ' CT Scan')

plt.subplot(132)
n1_mask_img = n1_mask_img[:,:, slice_val]
plt.imshow(n1_mask_img, cmap='gray')
plt.title(str(file) + ' Mask')
plt.subplots_adjust(wspace=0.6, hspace=0.6)

plt.subplot(133)
plt.imshow(slic_img, cmap='gray')
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plt.title('SLIC')

plt.show()

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

[5]: pairs = {
'Test': (130, 65)

}

#i = 1
#plt.subplots(len(pairs), 2, figsize=(20,20))
for key in pairs:

window, level = pairs[key]

new_image = window_level_function(n1_img, window, level)

#plt.subplot(len(pairs), 2, 2*i-1)
plt.imshow(new_image, cmap='gray')
plt.title('{} with (W/L) = ({}/{})'.format(key, window, level))
plt.xticks([])
plt.yticks([])

#plt.subplot(len(pairs), 2, 2*i)
#plt.hist(new_image.ravel(), bins=256)

#i += 1
plt.show()
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[6]: data_path = path = '.\Data\ct_scans'
file = '050.nii'
example_ni1 = os.path.join(data_path, file)
n1_img = nib.load(example_ni1).get_fdata()

data_path = path = './Data/masks'
example_nimask1 = os.path.join(data_path, file)
n1_mask_img = nib.load(example_nimask1).get_fdata()

slice_val = 20
slice_array.append(slice_val)

num_seg = 140
reg = 57
slic_img = segment_slic(n1_img[:,:, slice_val], num_seg, reg)

num_segments.append(num_seg)
region.append(reg)

plt.figure(figsize=(16, 16))

plt.subplot(131)
n1_img = n1_img[:,:, slice_val]
plt.imshow(n1_img, cmap='gray', vmin=0,vmax=1000)
plt.title(str(file) + ' CT Scan')
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plt.subplot(132)
n1_mask_img = n1_mask_img[:,:, slice_val]
plt.imshow(n1_mask_img, cmap='gray')
plt.title(str(file) + ' Mask')
plt.subplots_adjust(wspace=0.6, hspace=0.6)

plt.subplot(133)
plt.imshow(slic_img, cmap='gray')
plt.title('SLIC')

plt.show()

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

[7]: data_path = path = '.\Data\ct_scans'
file = '051.nii'
example_ni1 = os.path.join(data_path, file)
n1_img = nib.load(example_ni1).get_fdata()

data_path = path = './Data/masks'
example_nimask1 = os.path.join(data_path, file)
n1_mask_img = nib.load(example_nimask1).get_fdata()

slice_val = 29
slice_array.append(slice_val)

num_seg = 135
reg = 18
slic_img = segment_slic(n1_img[:,:, slice_val], num_seg, reg)

num_segments.append(num_seg)
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region.append(reg)

plt.figure(figsize=(16, 16))

plt.subplot(131)
n1_img = n1_img[:,:, slice_val]
plt.imshow(n1_img, cmap='gray', vmin=0,vmax=1000)
plt.title(str(file) + ' CT Scan')

plt.subplot(132)
n1_mask_img = n1_mask_img[:,:, slice_val]
plt.imshow(n1_mask_img, cmap='gray')
plt.title(str(file) + ' Mask')
plt.subplots_adjust(wspace=0.6, hspace=0.6)

plt.subplot(133)
plt.imshow(slic_img, cmap='gray')
plt.title('SLIC')

plt.show()

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

[8]: data_path = path = '.\Data\ct_scans'
file = '052.nii'
example_ni1 = os.path.join(data_path, file)
n1_img = nib.load(example_ni1).get_fdata()

data_path = path = './Data/masks'
example_nimask1 = os.path.join(data_path, file)
n1_mask_img = nib.load(example_nimask1).get_fdata()
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slice_val = 15
slice_array.append(slice_val)

num_seg = 120
reg = 31
slic_img = segment_slic(n1_img[:,:, slice_val], num_seg, reg)

num_segments.append(num_seg)
region.append(reg)

plt.figure(figsize=(16, 16))

plt.subplot(131)
n1_img = n1_img[:,:, slice_val]
plt.imshow(n1_img, cmap='gray', vmin=0,vmax=1000)
plt.title(str(file) + ' CT Scan')

plt.subplot(132)
n1_mask_img = n1_mask_img[:,:, slice_val]
plt.imshow(n1_mask_img, cmap='gray')
plt.title(str(file) + ' Mask')
plt.subplots_adjust(wspace=0.6, hspace=0.6)

plt.subplot(133)
plt.imshow(slic_img, cmap='gray')
plt.title('SLIC')

plt.show()

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)
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[9]: data_path = path = '.\Data\ct_scans'
file = '053.nii'
example_ni1 = os.path.join(data_path, file)
n1_img = nib.load(example_ni1).get_fdata()

data_path = path = './Data/masks'
example_nimask1 = os.path.join(data_path, file)
n1_mask_img = nib.load(example_nimask1).get_fdata()

slice_val = 22
slice_array.append(slice_val)

num_seg = 85
reg = 29
slic_img = segment_slic(n1_img[:,:, slice_val], num_seg, reg)

num_segments.append(num_seg)
region.append(reg)

plt.figure(figsize=(16, 16))

plt.subplot(131)
n1_img = n1_img[:,:, slice_val]
plt.imshow(n1_img, cmap='gray', vmin=0,vmax=1000)
plt.title(str(file) + ' CT Scan')

plt.subplot(132)
n1_mask_img = n1_mask_img[:,:, slice_val]
plt.imshow(n1_mask_img, cmap='gray')
plt.title(str(file) + ' Mask')
plt.subplots_adjust(wspace=0.6, hspace=0.6)

plt.subplot(133)
plt.imshow(slic_img, cmap='gray')
plt.title('SLIC')

plt.show()

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)
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[10]: print(slice_array)
print(num_segments)
print(region)

[14, 20, 29, 15, 22]
[133, 140, 135, 120, 85]
[17, 57, 18, 31, 29]

[11]: # Loop over all files

path = os.getcwd() + '/Data/ct_scans/'

#files = os.listdir(path)
files = ['049.nii', '050.nii', '051.nii', '052.nii', '053.nii']

RVD = pd.DataFrame(columns=['File','Ideal','Threshold','SLIC'])

i = 0

for file in files:

# Find image mask. If it doesn't exist continue to next iteration.
# if not(exists(os.getcwd() + '/Data/masks/' + file)):
# continue

# Load file
img = nib.load(path + file).get_fdata()
img_original = img
img = img[:,:, slice_array[i]]

# Load mask
mask_img = nib.load(os.getcwd() + '/Data/masks/' + file).get_fdata()
mask_img = mask_img[:,:, slice_array[i]]

# Window and Level
new_img = window_level_function(img, 130, 65)
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# Threshold Based
brain = segment_threshold(new_img, 0, 240)
threshold_img = segment_threshold(new_img, 120, 160)

# Chan-Vese
cv_img = chan_vese(new_img, mu=0.2, lambda1=1, lambda2=1, tol=1e-3, dt=0.2,␣

↪extended_output=True) #, max_num_iter=200,)

# SLIC Based
# Use original image for SLIC segmentation
# Not every hemorrage will be region 24!
slic_img = segment_slic(img, num_segments[i], region[i])

temp = pd.DataFrame({'File': [file],
'Ideal': [RVD_calc(brain, mask_img)],
'Threshold': [RVD_calc(brain, threshold_img)],
'ChanVese': [RVD_calc(brain, cv_img[0])],
'SLIC': [RVD_calc(brain, slic_img)],
'Average': [(RVD_calc(brain, threshold_img) +␣

↪RVD_calc(brain, cv_img[0]) + RVD_calc(brain, slic_img))/3]})

print(temp)
RVD = RVD.append(temp)

i = i + 1

plt.figure(figsize=(16, 16))
plt.subplot(161)
plt.imshow(img, cmap='gray')
plt.title(str(file))

plt.subplot(162)
plt.imshow(new_img, cmap='gray')
plt.title('Window and Level')

plt.subplot(163)
plt.imshow(mask_img, cmap='gray')
plt.title('Mask')

plt.subplot(164)
plt.imshow(threshold_img, cmap='gray')
plt.title('Threshold')

plt.subplot(165)
plt.imshow(cv_img[0], cmap='gray')
plt.title('ChanVese')
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plt.subplot(166)
plt.imshow(slic_img, cmap='gray')
plt.title('SLIC')

plt.show()

del img, mask_img, new_img, brain, threshold_img, cv_img, slic_img, temp

averages = RVD.mean(axis=0)
print('\nAverage RVD values:')
print(averages)

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

File Ideal Threshold ChanVese SLIC Average
0 049.nii 0.994882 0.999996 0.993385 0.991362 0.994914

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2200365756.py:83:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

averages = RVD.mean(axis=0)
C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

File Ideal Threshold ChanVese SLIC Average
0 050.nii 0.996813 0.999996 0.985031 0.99377 0.992932
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C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2200365756.py:83:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

averages = RVD.mean(axis=0)
C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

File Ideal Threshold ChanVese SLIC Average
0 051.nii 0.988396 0.999996 0.993257 0.988796 0.994016

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2200365756.py:83:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

averages = RVD.mean(axis=0)
C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

File Ideal Threshold ChanVese SLIC Average
0 052.nii 0.987572 0.999939 0.183181 0.983371 0.722164
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C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2200365756.py:83:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

averages = RVD.mean(axis=0)
C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2990673429.py:47:
FutureWarning: skimage.measure.label's indexing starts from 0. In future version
it will start from 1. To disable this warning, explicitely set the `start_label`
parameter to 1.

boundaries = slic(img, n_segments=num) #max_num_iter=100)

File Ideal Threshold ChanVese SLIC Average
0 053.nii 0.974147 0.999972 0.978465 0.967933 0.982123

Average RVD values:
Ideal 0.988362
Threshold 0.999980
SLIC 0.985046
ChanVese 0.826664
Average 0.937230
dtype: float64

C:\Users\jnrri\AppData\Local\Temp/ipykernel_10532/2200365756.py:83:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with
'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.

averages = RVD.mean(axis=0)

[12]: print(RVD)
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File Ideal Threshold SLIC ChanVese Average
0 049.nii 0.994882 0.999996 0.991362 0.993385 0.994914
0 050.nii 0.996813 0.999996 0.993770 0.985031 0.992932
0 051.nii 0.988396 0.999996 0.988796 0.993257 0.994016
0 052.nii 0.987572 0.999939 0.983371 0.183181 0.722164
0 053.nii 0.974147 0.999972 0.967933 0.978465 0.982123

[ ]:
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